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2Centro Atómico Bariloche and Instituto Balseiro,
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Supplementary information on the numerics. Here we
supply further details on the numerical calculations re-
ported in the main text. The model used for the numer-
ical results reported in Figs. 2-3 of the manuscript is a
nearest neighbors π-orbitals (tight-binding) model as is
standard for graphene (see for example [1–3]):
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where c†i and ci are the electronic creation and annihila-
tion operators at the π-orbital on site i, with energy Ei,
and γij = γ0 = 2.7 eV is the nearest-neighbors carbon-
carbon hopping matrix element [4].

The interaction with the laser at normal incidence
on the graphene sheet is described through a time-
dependent phase in the hopping amplitudes as in [5–7],
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where Φ0 is the magnetic flux quantum and A is the
vector potential which is related to the electric field E
through E = −(1/c) ∂A/∂t.

The general scheme based on Floquet theory [8–10]
described in the text can then be used to compute the
Floquet spectrum, the average density of states and the
conductance [8, 11] (see also Chapter 6 of [3]). The cal-
culation in Fig. 1 corresponds to a k.p calculation with
a model as the one mentioned in the main text. In the
spectral calculations shown in Fig. 2, the tight-binding
model in the presence of radiation is solved and the full
spectrum obtained.

To compute the transport properties one considers a
setup where only the sample is being irradiated while
the electrodes are not. From the matrix form of ĤF

we can compute the associated Floquet-Green functions
which can be related to the transmission probabilities
between the different channels. Assuming that the sam-
ple is connected to semi-infinite electrodes where ther-
malization takes place, a coherent calculation gives the
time-averaged current [8].

In the case of the results presented in Figure 3, to nu-
merically show the chirality of the edge states we need to
locally probe the transport. To such end, we imagine a
situation where local probes are attached to specific sites

s1 and s2. s1 is located along the the line labeled with L
in the inset of Fig. 3a (marked in red) while s2 is labeled
along the line labeled with R. The layers L and R are a
distance d along the y direction apart from each other.
The sample comprises a region eight times larger than
d and included the area depicted in the insets of Fig.
3. The ribbon is infinite in both directions and only the
sample area is being irradiated. Then, within Floquet’s
theory [8–10] and by assuming probes weakly connected
to s1 and s2 one can compute the total transmission prob-
abilities Ts1→s2 and Ts2→s1 from the Green’s functions as
in [6, 8]. In the limit of weakly coupled probes the spe-
cific model taken for them does not influence the results
shown in Fig. 3. A crucial assumption for this formalism
to be valid is that the leads are non-irradiated, thereby
allowing for the asymptotic occupations in the leads to
be well defined.

In the calculations involving different types of disorder
(Fig. 3 c-f), the disorder is included only in the region
between L and R.
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