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In this supplementary material we present further numerical results and details supporting the conclusions of
the main text.

Laser-induced gaps in graphene.– The laser-induced gaps
in graphene under circular polarization have been studied by
many authors since the work by Oka and Aoki [1]. Here we
briefly revisit the nature of these gaps.

Let us consider an infinite irradiated ribbon. The Flo-
quet space is the direct product between the usual Hilbert
space and the space of time-periodic functions with period
2π/Ω. This space is spanned by the direct product basis
{|(k,±), n〉 = |(k,±)〉 ⊗ |n〉} where {|(k,±)〉} denotes the
eigenstates of the graphene Hamiltonian (without radiation)
corresponding to wave-vector k bearing a positive/negative
projection (±) on the pseudospin and {|n〉} is a basis for the
space of time-periodic functions, 〈t|n〉 = exp(inΩt). When
the laser is switched off, these states are also eigenstates of
the full Hamiltonian and the quasi-energy dispersion around
one of the Dirac points is as represented in Fig. S1(a) , we
have conical dispersions shifted by ~Ω. At ~Ω/2 one has
crossing point between Floquet states corresponding to n = 0
and n = 1. Turning on the laser introduces a matrix element
which lifts the degeneracy between these states, thereby open-
ing a bulk gap (grey lines in the scheme). The eigenstates of
the full Hamiltonian acquire therefore a varying weight on the
Floquet replicas.

The gap at the Dirac point (see for example Fig. 2(a) of the
main text) can be understood in a similar way. The main dif-
ference being that the states at the Dirac point (both belonging
to n = 0, represented in black in Fig.S1(a)) get mixed through
a virtual process involving the emission and reabsorption of a
photon[1, 2]. In this case, the resulting gap is second order in
the electron-photon coupling and the states have almost unit
weight on the n = 0 replica. One could also note that there
are other avoided crossings at zero energy between the repli-
cas with n = +1 and n = −1, the physics is again similar.

The Floquet Hamiltonian in the radiated and non-radiated
areas is represented in Fig. S1(b).

Simulation scheme.– The transport simulations were car-
ried out using Floquet scattering theory [3, 4] as outlined in
the main text. The transmission probabilities in Eqs. (1-3) as
well as the time-averaged density of states can be computed
from the Floquet-Green’s functions as described in Chapter 6
of Ref. [5].

Simulations with frequencies in the mid-infrared range may
offer better chances of experimental realization [6, 7] but
would imply a much higher computational cost because a
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FIG. S1. (a) Scheme of the Floquet quasi-energy dispersion close to
the Dirac point in graphene. Floquet replicas are shifted by ~Ω, three
of them are shown in this plot. When the radiation is switched on the
these replicas couple with each other and degeneracies can be lifted
(grey lines). This produces gaps around the Dirac point and ±~Ω/2.
(b) Scheme showing the Floquet space using a real space basis for
graphene. Far away in the non-illuminated leads the eigenstates cor-
respond to a well-defined index n. Therefore, incoming electrons
arrive to the illuminated area from a reference channel (n = 0) and
may then couple to other replicas through inelastic processes as rep-
resented in (b).

larger system is needed for the chiral edge states to develop
at small to moderate laser intensities. The parameters used
here are similar to those in the figures of the main text and
are chosen for illustration purposes. In the simulations for the
hexagonal (rectangular) setup of Fig. 1(c) (Fig. 1b) the laser
is turned on in the central part in an area of hexagonal (rect-
angular) shape and is turned off slowly towards the leads with



S2

a decay length of ten lattice constants. This smoothens the
interface with the leads.

Pumped current in an H-shaped six terminal
configuration.– As mentioned in the text, in a multi-
terminal setup inversion symmetry alone does not warrant a
zero pumped current. This is specially evident in a graphene
sample with the six terminal configuration of Fig. 1(a) of the
main text. Figure S2 shows numerical results for the pumped
current through each lead in such a setup. We show only the
currents in leads 1, 2 and 3 as represented in the scheme. The
currents in the remaining leads overlap with those shown:
I6 = I1, I2 = I5 and I3 = I4. The inset (a) shows the
asymmetry of the corresponding transmission coefficients
δTj(ε) =

∑
i(Ti,j(ε)− Tj,i(ε)).

Local density of states at the dynamical gap.– Match-
ing problems between the illuminated sample and non-
illuminated leads were shown in the main text to lead to a
decrease in the two-terminal conductance following an ‘S’
shape. As discussed in the main text this reduction/asymmetry
of the electronic transmission is not due to the lack of available
states. This is clearly shown in Fig. S3 where we present the
time-averaged local density of states at two selected energies
(a) E = 0.7γ0 and (b) E = 0.8γ0. In consistency with ana-
lytical calculations [6, 7] no appreciable differences between
the two panels are observed, the contribution from the chiral
edge states in the illuminated part of the sample is clear.

The role of pseudospin on the matching between non-
illuminated and illuminated areas.– Now we present some
results to support our statement that the pseudospin plays a
role on the matching problems found in the numerics for the
case of graphene leads without additional doping. Specifi-
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FIG. S2. (main frame) Pumped currents for an H-shaped six termi-
nals configuration as shown in the scheme. Directional asymmetry in
the transmission coefficients for terminals 1 to 3 is shown in the inset
(a). These results correspond to graphene leads of width W = 99a
(1 and 6 are zigzag ribbons, 2-5 are armchair) without additional
doping. The radiated area is a square of length L = 512a. The laser
of frequency ~Ω = 1.5γ0 is turned-off slowly over a length of 30a
and the intensity is parametrized by z = 0.15.
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FIG. S3. Time-averaged local density of states for the hexagonal
configuration used in Fig. 3 of the main text at two different energies
(the same as in Fig. 3(c) and (d)) (a) E = 0.7γ0 and (b) E = 0.8γ0.
While delocalized states are available in the leads, the edge states and
the bulk gap are clearly observed within the central part (illuminated
area). The parameters are the same as in Fig. 3.

cally, we computed the projection of the pseudospin along the
ribbon direction (where translational invariance holds) in the
presence of laser illumination, considering only the n = 0
part of the Floquet eigenfunction. The results are shown in
Fig. S4, the color scale indicates the value of the pseudospin
projection on the corresponding eigenstate. If we sweep the
dynamical gap from top to bottom, we can see that pseu-
dospin changes sign when passing from the bottom part of
the dynamical gap to the top. Since the pseudospin of elec-
trons incoming from the non-irradiated graphene leads keep
their pseudospin projection constant, a mismatch is expected.
Transport will then be suppressed on the lower part of the dy-
namical gap and favoured on the upper part.

Detail of chiral edge states developing at higher order
replicas and withE ∼ 0.– In the discussion around Fig. 4 we
mentioned that only the chiral edge states crossing at k = π/a
have an important weight on the n = 0 channel. In Fig. S5 we
show this explicitly. Figs. S5(a) and (b) reproduce Figs. 4(b)
and (c) of the main text and show the full Floquet quasi-energy
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FIG. S4. (a) and (b): Quasi-energy band structure for a zigzag ribbon
of widthW = 125a, in presence of a laser of frequency ~Ω = 1.5γ0
and z = 0.1. The color scale indicates the expectation value of
the pseudospin projected along the ribbon direction and the n = 0
Floquet channel. The color scale is saturated above/below 0.1 for
better visualization.

structure. Figs. S5(c) and (d) show the same quasi-energy
structure in a color scale where the color encodes the weight
on the n = 0 channel, from zero weight (white) to unit weight
(black). The chirality of the edge states away from k = π/a
is the opposite as those crossing at k = π/a, this is shown in
the inset of Fig. S5(d) where only the states localized on one
edge of the ribbon are shown.
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FIG. S5. (a) and (b): Full quasi-energy band structure for two laser
intensities, z = 0.15 (a) and z = 0.25 (b). (c) and (d) represent
the same data but with a color scale showing the weight of the corre-
sponding eigenstate on the n = 0 Floquet channel. White is for zero
weight and black is for unit weigth. These results are for ~Ω = 1.5γ0
and zigzag terminated leads with W = 99a. The inset in (d) shows
the weight of the states on sites up to 2.5a from one of the sample
edges (summed over all replicas).
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