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We report on simulations of the dc conductance and quantum Hall response of a Floquet topological
insulator using Floquet scattering theory. Our results reveal that laser-induced edge states lead to quantum
Hall plateaus once imperfect matching with the nonilluminated leads is lessened. The magnitude of the Hall
plateaus, however, is not directly related to the number and chirality of all the edge states at a given energy,
as usual. Instead, the plateaus are dominated by those edge states adding to the time-averaged density of
states. Therefore, the dc quantum Hall conductance of a Floquet topological insulator is not directly linked
to topological invariants of the full Floquet bands.

DOI: 10.1103/PhysRevLett.113.266801 PACS numbers: 73.43.-f, 05.60.Gg, 73.63.-b, 78.67.-n

Introduction.—Floquet topological insulators (FTIs)
[1–3] are an incarnation of topological insulators (TIs)
[4–6] where the nontrivial topological properties [1] are
crafted with an external driving (e.g., a circularly polarized
laser). In FTIs, the Floquet chiral edge states bridge either a
native bulk gap, as in semiconductor quantum wells [3], or
a gap that is also produced by the driving, as in the case of
graphene [7,8]. Recently, laser-induced gaps have been
probed at the surface of a three-dimensional TI [9]. The
field is evolving at a fast pace [10–13] with additional
facets in general quantum physics [14–16], cold atoms
[17–20], and photonic crystals [21].
The search for Floquet topological states has started, and

some theoretical proposals [1,7,22–24] embrace a realiza-
tion in broadly available materials such as graphene
[25,26]. These states could be probed through pump-probe
photoemission [24], or STM [27]. But a crucial issue
remains: the connection between the Floquet quasienergy
spectra and the conductance.
Indeed, one of the theoretical milestones established

shortly after the discovery of the quantized Hall effect
[28] is the connection between the Hall conductance and
a topological invariant [29] (the Chern number). This
invariant, in turn, is related to the chiral edge states through
the bulk-boundary correspondence [6,30]. For FTIs, the
situation is more subtle. On one hand, the nonequilibrium
electronic occupations [1,31] pose a difficult problem if
dissipation is to be consideredwithin the system [31,32]. An
alternative is a setup where external driving is limited to a
finite region, thus leaving well-defined occupations for the
asymptotic states [33–35], which can be handled through a
scattering approach [10,22]. But even in this case, while
some authors argue that the Hall conductance will be
quantized within a few percent of 2e2=h [22], others claim
that the two-terminal dc conductance may show an anoma-
lous suppression [36]. On the other hand, there could also be

a dc current at zero bias voltage (a pumping current), thereby
complicating the expected transport response.
Here, we explicitly address dc charge transport in FTIs in

a multiterminal geometry (Fig. 1). First, by using a Floquet
scattering picture [33–35], we can discuss the calculation of
the dc conductance and address the role of the volt meters
in driven systems where a current may arise even at zero
bias. Later on, we do explicit calculations for the case of
illuminated graphene. Our results show that the nonlocal dc
Hall conductance can reach roughly constant values, once
the setup is tuned to lessen the imperfect matching between
the irradiated area and the nonirradiated leads. More
importantly, we find a major departure from other topo-
logical systems: the magnitude of the Hall conductance
plateaus is determined only by a subset of all the Floquet
chiral edge states available at a given energy, breaking

FIG. 1 (color online). (a) Scheme of a setup where a laser of
frequency Ω illuminates part of a sample in a six-terminal
configuration. (b) Six-terminal setup with arrows representing
one of the possible directions for the currents induced at zero bias
voltage (pumped currents) on each lead. (c) Six-terminal con-
figuration in a hexagonal arrangement. For a graphene sample, this
high symmetry configuration gives a vanishing pumped current.
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down the connection between topological invariants such
as the winding numbers [14] and the Hall plateaus in FTIs.
This result does not depend on the choice of graphene as a
particular example.
Floquet theory and dc current.—Floquet theory offers a

suitable framework for systems driven by a time-periodic
perturbation [35,37]. One starts by noting that for a
Hamiltonian Ĥ with a time period T there is a complete
set of solutions of the formψαðr; tÞ ¼ expð−iεαt=ℏÞϕαðr; tÞ,
where εα is the so-called quasienergy and ϕαðr; tþ TÞ ¼
ϕαðr; tÞ is the corresponding Floquet state. By a
replacement of these solutions into the time-dependent
Schrödinger equation, the Floquet states turn out to satisfy
a time-independent Schrödinger-like equation with the
Hamiltonian being replaced by the Floquet Hamiltonian
ĤF ≡ Ĥ − iℏð∂=∂tÞ. Therefore, one has an eigenvalue
problem in the direct product (Floquet) space [38],
R ⊗ T , R being the usual Hilbert space and T the space
of periodic functions with period T ¼ 2π=Ω (spanned by the
functions expðinΩtÞwhere the index n can be assimilated to
the number of “photon” excitations).
When the time-dependent potential is limited to the

scattering region (either because of a finite laser spot or
the screening inside metallic contacts) as in Fig. 1(a), the
asymptotic states and their occupations remain well
defined. The Floquet channel for incoming electrons can
be set, without loss of generality, as the reference channel
n ¼ 0; this elastic channel is naturally set apart from other
replicas with n ≠ 0, a fact that will be crucial later on. Then,
one has a coherent scattering picture [33,34] where dis-
sipation is assumed to take place far in the leads. In a
multiterminal setup, the time-averaged current at lead α,
Īα ¼ ð1=TÞ R T

0 IαðtÞdt, is [33]

Īα ¼
2e
h

X

β≠α

X

n

Z
½T ðnÞ

β;αðεÞfαðεÞ − T ðnÞ
α;βðεÞfβðεÞ�dε: ð1Þ

T ðnÞ
β;αðεÞ is the transmission probability for an electron from

lead α with energy ε to lead β emitting (absorbing) n > 0
(n < 0) photons, and fαðεÞ is the Fermi function at lead α.
In the absence of many-body interactions, this is equivalent
to the Keldysh formalism [35,39].
The differential conductance can be obtained after a linear

expansion in the bias voltage(s). Since the time-dependent
potential may cause that

P
βT β;αðεÞ ≠

P
βT α;βðεÞ

(T α;β ≡P
nT

ðnÞ
α;β is the total transmission probability), a

currentmay appear even in the absence of a bias voltage [33].
Conductance in a two-terminal setup.—In this case

α; β ¼ L; R (left, right), and unitarity requires ĪL ¼
−ĪR ≡ Ī . Equation (1) can be written as

Ī ¼2e
h

Z
(T ðεÞ½fLðεÞ−fRðεÞ�þδT ðεÞ½fLðεÞþfRðεÞ�)dε;

ð2Þ

where T ðεÞ ¼ ½T R;LðεÞ þ T L;RðεÞ�=2 and δT ¼ ðT R;L−
T L;RÞ=2. We consider the zero temperature limit but
generalization to finite temperature is direct. To linear
order in the bias voltage V we get Ī ≃ ½ð2e2Þ=h�T ðεFÞ×
V þ ðe2=hÞ R δT ðεÞfðεÞdε. The second term can be inter-
preted as a pumped current (IP) resulting from the
asymmetry of the transmission coefficients. Since it does
not depend on the bias voltage, the differential conductance
is ð2e2=hÞT ðεFÞ. In contrast to the result for time-
independent systems, the conductance depends on the
transmission probabilities from left to right and from right
to left. When inversion symmetry (IS) holds, both leads are
indistinguishable (δT ¼ 0) and unitarity warrants zero
current at zero bias. Breaking the symmetry either because
of defects or slightly different contacts may introduce a
large asymmetry in the transmission coefficients as we will
see later on when discussing Fig. 2.
Multiterminal conductance.—In contrast to the two-

terminal case, in a multiterminal setup IS does not warrant
a zero pumped current (contrary to what was argued in
Ref. [22]). Indeed, in a six-terminal configuration as the
one in Fig. 1(b), in the absence of any bias voltage IS
requires Ī1 ¼ Ī6 and Ī2 ¼ Ī5 and Ī3 ¼ Ī4, which
together with charge conservation may lead to solutions
where, for example, leads 2 to 5 feed nonzero currents into

FIG. 2 (color online). (a) Quasienergy dispersion for a zigzag
graphene ribbon of width W ¼ 125a illuminated by a circularly
polarized laser of frequency ℏΩ ¼ 1.5γ0 and intensity z ¼ 0.15.
The color scale encodes theweight of the states on the time-averaged
DOS at energy E: white for no weight and black for maximum
weight. Replicas with−2 ≤ n ≤ 2 are considered. (b) Conductance
in a two-terminal setup where a section of the infinite zigzag
ribbon of length L ¼ 420a is illuminated. Full (blue) circles
correspond to the pristine system while the empty (red) circles
are for a ribbon with 15 vacancies distributed at random. Symmetry
breaking due to defects leads to a pumped current IP (inset).
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leads 1 and 6. Therefore, unless more stringent conditions
on the setup and geometry are imposed, the volt meter may
have to do additional work against the time-dependent field
to keep a zero dc current.
To measure a multiterminal differential conductance, we

need to establish a protocol. We start with no bias voltage
and define a subset of electrodes as our volt meters [40–42].
In our discussion we assume that a volt meter is a device
that adjusts its internal parameters to keep a zero dc current
on the corresponding lead. In any case, the internal volt
meter parameters are shifted until the associated currents
[given by Eq. (1)] are zero [43]. Then one has a non-
equilibrium state where we have counteracted the pumping
currents at the volt meters (the source and drain may still
sustain a nonzero IPα). This state is characterized by a set
of internal parameters (that we omit for brevity) and

chemical potentials on each lead denoted by fμð0Þα g.
Starting from this state and assuming that deviations δμα ≡
μα − μð0Þα are small enough, one gets

Īα ¼ IPα þ
2e
h

X

β≠α
½T β;αðεFÞδμα − T α;βðεFÞδμβ�; ð3Þ

where IPα ¼ 0 at the volt meters. Thenwe proceed as usual:
fixing a small bias between two leads and imposing a zero-dc
current on the voltmeters. The obtained fδμαg determine the
conductance and Hall resistance. Hence, though it may give
a remnant current at zero bias, pumping should not affect the
linear conductance. When all leads are equivalent (a con-
dition depending also on the details of the lattice), as in the
setup of Fig. 1(c), the pumped currents vanish.
Conductance of irradiated graphene ribbons.—

Illuminating graphene with circularly polarized light can
turn it into an FTI: it develops bulk band gaps [1,44] (both at
the Dirac point and at�ℏΩ=2), which are bridged by chiral
edge states [7,8]. The two-terminal conductance of these
states has only been studied at the Dirac point [10,31]. The
nonlocal conductance in a multiterminal configuration, on
the other hand, has not been explicitly examined, to the best
of our knowledge, apart from a calculation based on a Kubo
formula presented in Ref. [1] and an approximate analytical
calculation in Ref. [22]. We address this in the following.
We consider an all-graphene system where semi-infinite

graphene ribbons serve as electrodes. Graphene is modeled
through a standard π-orbitals HamiltonianH ¼ P

iEic
†
i ci−P

hi;ji½γijc†i cj þ H:c:�, where c†i and ci are the electronic
creation and annihilation operators at the π orbital localized
on site i, which has energy Ei (Ei is set equal to zero on the
central area and shifted in the leads to simulate an additional
doping); γij ¼ γ0 ¼ 2.7 eV is the nearest-neighbors hop-
ping. The interaction with the laser (assuming normal
incidence) is introduced through a time-dependent phase
in the hopping amplitudes [1,44], γij ¼ γ0 exp½ið2π=Φ0Þ×R
ri
rj
AðtÞ · dl�, whereΦ0 is the magnetic flux quantum andA

is the vector potential that is related to the electric field E

through E ¼ −ð1=cÞ∂A=∂t. The driving is assumed to take
place only in the central region and is smoothly turned off
before reaching the leads. z≡ 2πaA0=ð

ffiffiffi
3

p
Φ0Þ characterizes

the laser strength, A0 ¼ jAj, and a is the graphene lattice
constant. For the numerics, we used both an implementation
built on Kwant [45] and Floquet-Green's functions [44,46].
Simulating realistic laser parameters requires large systems
[7,8] with a high computing cost. Rather, the numerics here
aim at illustrating fundamental issues of FTIs.
Figure 2(a) shows the quasienergy dispersion of a zigzag

ribbon illuminated by a circularly polarized laser. The laser
opens bulk gaps both at the Dirac point and at �ℏΩ=2 but
also produces chiral edge states bridging them. The former
gap is due to the lifting of degeneracies among n ¼ 0 and
n ¼ �1 replicas, while the latter is produced by a virtual
process of photon emission and reabsorption [1,44].
Figure 2(b) shows the dc two-terminal conductance for
both the pristine system [full (blue) circles with a dashed
area] and the same ribbon with 15 random vacancies within
the illuminated area [empty (red) circles]. As expected, there
is a strong reduction of the conductance at the laser induced-
gaps: the conductance within these bulk gaps is due to the
chiral edge states. While the magnitude of the latter has the
correct order of magnitude (∼2e2=h), it presents a strong
modulation as a function of energy. In addition, the presence
of disorder gives a directional asymmetry: despite the small
number of vacancies (less than 1‰), there is an asymmetry
in the transmission coefficients, resulting in a pumped
current [Fig. 2(b) inset]. We find that this effect is even
stronger in the H-shaped setup of Fig. 1(b) even without
disorder (see the Supplemental Material [47]).
Hall conductance of irradiated graphene.—Now we

turn to the Hall configuration of Fig. 1(c), where the
hexagonal setup guarantees that there is no pumped current.
Figures 3(a) and 3(b) show, respectively, the conductance
between terminals 1 and 6 (the current source and drain,
respectively) and the Hall resistance measured between 2
and 4. Empty circles with shaded area underneath are for
homogeneously doped graphene (Ei ¼ 0) whereas black
(triangles) and red (solid circles) traces are for highly doped
leads (Ei set to 0.75γ0 and 1.25γ0 in the leads region).
Besides the strong modulation, the Hall resistance presents
three main features: (i) a nonvanishing Hall response at the
Floquet gaps, (ii) a Hall resistance for εF ∼ 0 with a sign
opposite that for εF ∼ ℏΩ=2, and (iii) a strong dependence
of the modulation on doping. Feature (i) is produced by the
Floquet chiral edge states [1,7,8], while feature (ii) follows
from the fact that, in this range of laser frequencies, the
chiral states have opposite velocities at each gap.
The contrast between the conductance and Hall resis-

tances just below and above the center of the dynamical gap
(E ∼ ℏΩ=2) [Figs. 3(a) and 3(b)] follows from a mismatch
between states inside and outside the radiated region.
Incident electrons coming from the leads belong to a
well-defined Floquet channel (say n ¼ 0) and then couple
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with the Floquet states inside the radiated region through
their projection on the n ¼ 0 replica. Mismatch occurs
because the incoming states in the leads have a projection
of their pseudospin along the ribbon, which remains
roughly constant across the gap while the corresponding
pseudospin of the n ¼ 0 component of the edge state flips
sign at the center of the gap, being parallel to that in the
nonradiated area for E ∼ ℏΩ=2þ and antiparallel for E ∼
ℏΩ=2− [8] (Supplemental Material [47]). This gives the
anomalous conductance suppression with the “S” shape in
Fig. 3(a). Doping the leads alleviates this mismatch since
above the van Hove singularity graphene behaves as a
normal metal. This is indeed what we observe in Figs. 3(a)
and 3(b) (black and red lines) when the leads are heavily
doped. The Hall resistance reaches roughly constant values.
In static systems, quantum Hall plateaus are determined

by the number of chiral edge states, which by means of the
bulk-boundary correspondence, can be related to the Chern
numbers of the Bloch bands [6]. In FTIs, the Chern
numbers might not be enough and other topological
invariants could be needed to determine if the material is
topologically trivial or not [14]. But in any case, an explicit
calculation [see Figs. 4(b) and 4(c)] shows that there are
indeed chiral edge states around E ∼ 0 other than those
showing up in Fig. 2(a) but that are not impacting the Hall
conductance. Indeed, besides the states crossing at k ¼ π=a
with zero energy [which are clearly distinguished in
the dispersion projected on the n ¼ 0 channel shown in
Fig. 2(a)], in Figs. 4(b) and 4(c) other chiral edge states
(with opposite chirality) develop. Their projection on n ¼ 0
is, however, negligible because they arise from the coupling

between the n ¼ −1 and 1 replicas. Figure 4(a) shows the
dc Hall resistance for small to moderate laser intensities
parametrized by z. The leads are doped to lessen matching
problems. For z ¼ 0.25, the plateau becomes broader, but
we observe no change in its value. This shows that for
Floquet topological insulators in a scattering configuration
the chiral edge states do not all stand on the same footing in
determining the Hall conductance plateaus.
Rather, our results support the conclusion that it is the

chiral edge states with a weight on the n ¼ 0 channel (those
adding to the time-averaged density of states, DOS, for a
given energy) that determine the value of the conductance
plateau (one state for E ∼ 0 and two for E ∼�ℏΩ=2). The
reason, which does not depend on the material, is that in the
weak driving regime discussed here the chiral edge states
not showing up in the time-averaged DOS [encoded in the
color scale in Fig. 2(a)] are very poorly coupled to the
incoming electrons (n ¼ 0 channel). This is a major
departure between FTIs and systems with time-independent
Hamiltonians and one of the central results of this work.
Although the chiral edge states away from k ∼ π=a do not

contribute to theHall response, thewidth of theHall plateaus
in Fig. 4(a) is reduced because of photon-assisted processes
involving regions with a large DOS in the higher-order
bands. This is not observed at the dynamical gap, which is
linear in z, and therefore better protected from higher-order
processes. In the opposite limit of very high laser intensities,
the physics may change completely since the states become
highly delocalized along the Floquet channel n.

FIG. 3 (color online). Results for the setup of Fig. 1(c);
parameters are as in Fig. 2(b). (a) Conductance. (b) Hall resistance
(see insets); empty (blue) circles are for leads without additional
doping, and (black) triangles and full circles are for n-doped leads
(on-site energies are shifted by 0.75γ0 and 1.25γ0, respectively).

FIG. 4 (color online). (a) Detail of the Hall resistance in the
hexagonal setup close to theDirac point. Triangles (squares) are for
laser intensity parametrized by z ¼ 0.15 (z ¼ 0.25). The results are
for ℏΩ¼1.5γ0, and zigzag terminated leads (W¼99a, L ¼ 300a)
with on-site energies are shifted by 1.5γ0. The full quasienergy
spectra for these intensities are shown in (b) and (c). Chiral edge
states other than those shown in the projection on the Floquet
channel n ¼ 0 in Fig. 2(a) also develop but do not impact Rxy.
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Final remarks.—In summary, based on a Floquet
scattering picture, we addressed the multiterminal dc
conductance of driven systems. Our numerical results for
the laser-induced Floquet chiral edge states in graphene
show that the Hall resistance reaches plateaus when tuning
the interfaces with the leads. The Hall plateaus are found
not to follow the usual connection with the number or
chirality of the Floquet edge states. Many of these states
remain “silent,” and the response is dominated by those
states weighting on the time-averaged DOS. Whether these
hidden edge states could manifest in other transport
properties remains an open issue.
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