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ABSTRACT This work presents a theoretical study of quantum
charge transport through zigzag and armchair carbon nano-
tubes in the presence of electron–phonon interaction. By using
a non-perturbative description of the electron–phonon coupling
in Fock space, one reveals the occurrence of a transmission gap
opening at half the optical A1(L) phonon energy, hω0/2, above
(below) the charge neutrality point associated with phonon
emission (absorption). This mechanism, which is prevented at
low bias voltages by Pauli blocking, develops when the system
is driven out of equilibrium (high bias voltages). This yields an
onset of current saturation of about 30 µA, which brings a com-
pletely novel perspective to understand electrical characteristics
of nanotube-based devices.

PACS 73.63.Fg; 72.10.Di; 73.23.-b; 05.60.Gg

1 Introduction

The geometrical arrangement of carbon atoms to
form nanostructures or low-dimensional systems is at the ori-
gin of unprecedented novel physical phenomena and proper-
ties. Indeed, they opened new directions for science and tech-
nology. The discoveries of buckminsterfullerene (C60) [1] and
carbon nanotubes (CNTs) [2] have benefited from the emerg-
ing quantum effects in low-disorder nano-objects. These
carbon-based nano-object systems show some further simi-
larities with the whole class of π-conjugated systems [3], in
which σ-bonding is ensured by three out of the four valence
electrons of carbon, whereas the remaining one participates in
π-bonding, with a delocalized electronic population extended
over long length scales. Notwithstanding, pure (undoped)
π-conjugated systems efficiently lower their total energy by
bond dimerization (alternating short and long bonds), bring-
ing the system to a semiconducting state (with a typical gap in
the order of 1.5 eV). This mechanism, referred to as the Peierls
transition, prevents the synthesis of all carbon-based metal-
lic systems of high crystalline order, and with large charge
mobilities.

In contrast, CNTs offer the possibility for engineering
quasi-one-dimensional ballistic conductors, owing to their
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anomalously low sensitivity to disorder-induced backscatter-
ing [4] and unique spectral features [5]. In these nanoma-
terials, the Peierls instability is inefficient to open a signifi-
cant energy gap [6–11], and the existence of semiconducting
nanotubes results from well-defined helical symmetry depen-
dent selection rules, that forbid the existence of eigenstates at
the Fermi level. The associated energy gap is diameter depen-
dent and of pure topological origin [12].

Low-energy electronic properties of carbon nanotubes
have been intensively studied over recent years. Depending
on their coupling strength with contact electrodes, small-
diameter metallic nanotubes are found to either display un-
precedented ballistic transport over micron scales [13, 14] or
exhibit signatures of non-Fermi-liquid behavior [15]. In large-
diameter multiwall nanotubes or intentionally doped CNTs,
the enhanced contribution of intrinsic disorder drives the sys-
tem from weakly [16, 17] to strongly localized regimes [18],
as long as the electronic phase coherence remains conserved.
Fascinating magneto-transport properties result from the en-
tangled contribution of field-dependent band structures and
quantum interference effects [19].

Differently, high-energy properties are much less under-
stood and strongly debated. Indeed, even if ballistic transport
dominates in the low-bias regime, by increasing the poten-
tial bias across the nanotubes, the contribution of electron–
phonon mediated backscattering is steadily enhanced, up
to a saturation regime where intrinsic dissipation becomes
dominant over current drift [13, 14, 20, 21]. This brings seri-
ous performance limitations of CNT-based field-effect tran-
sistors [22], but also raises fundamental questions about
the nature of inelastic quantum transport in these unique
objects [23–29].

In the high-bias regime, several attempts to relate the
measured quantum conductance to some inelastic scattering
lengths have been reported [30]. These estimations of in-
elastic scattering lengths assume the full applicability of the
Fermi golden rule (FGR), that is, the validity of the per-
turbative regime for treating electron–phonon coupling and
decoupling of the vibrational and electronic degrees of free-
dom. However, electron–phonon coupling yields important
modifications of both electronic and phonon band structures.
In the phonon dispersion of the material, one finds a sin-
gular behavior for certain q vectors and phonon branches,
which is referred to as the Kohn anomaly [31] and which
is driven by e–ph coupling. Similarly, the activation of vi-
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brational modes has also some direct influence on the elec-
tronic spectra of CNTs. This has been initially evidenced
through ab initio calculations, showing how the electronic
band structure is modified in time, owing to time-dependent
phonon-induced bond alternation [32]. For longitudinal op-
tical modes, the π–π electronic band structure for metallic
CNTs shows a time-dependent gap oscillation [32], which
severely limits a rigorous application of the FGR and subse-
quent use of semiclassical-like transport methods. This time-
dependent phenomenon has been shown to strongly degrade
the coherent part of the Kubo quantum conductance [27].

In a previous paper [33], by implementing a quantum
mechanical treatment of electron–phonon interaction in com-
puting inelastic quantum transport, we have shown that the
coupling of electrons with optical A1(L) phonons in (N, 0)

zigzag tubes is at the origin of an energy gap opening at hω0/2
above (below) the charge neutrality point (CNP), owing to
phonon emission (absorption). This novel many-body mech-
anism, which is prevented at low bias by Pauli blocking, is
activated when driving the system out of equilibrium (high-
bias regime).

Here, this prior study is extended and generalized, and
these phenomena are explored for the case of armchair CNTs.
Besides, the theoretical description developed in [33] is deep-
ened, and its connections with other schemes established. In
Sect. 2, we focus on different possible Hamiltonian descrip-
tions for the e–ph interaction and discuss the links between
them. Specifically, a road map that links a full quantum de-
scription to a one-body time-dependent scheme and a mean-
field approach is proposed. In Sect. 3, the full many-body
scheme is outlined. In Sect. 4, this general scheme is applied
to the case of optical modes in zigzag and armchair CNTs,
while the conclusions are given in Sect. 5.

2 Hamiltonian description for the electron–phonon
interaction: from a mean-field approach
to a full quantum description

In this section, the effect of vibrations on the elec-
tronic transport is modeled. Our starting point is the elabo-
ration of the Hamiltonian for the coupled e–ph system. For
simplicity, an infinite CNT is considered and the electrons are
allowed to interact with phonons only in the central part of the
CNT. The Hamiltonian of the system can be written as a sum
of an electronic part, a phonon part and an electron–phonon
interaction term:

H = He + Hph + He−ph . (1)

The electronic part is encoded through a π-orbital effective
model (i.e. a single π-orbital per carbon atom):

He =
∑

i

Eic
+
i ci −γ0

∑

〈i, j〉

[
c+

i cj +h.c.
]

, (2)

where c+
i and ci are the creation and annihilation operators for

electrons at site i and γ0 is the π–π integral overlap; note that
the second summation is restricted to nearest neighbors in the
CNT. Let us consider a single phonon mode of energy hω0.
Then, the phonon term is simply

Hph = hω0b+b , (3)

where b+ and b are the phonon operators.
The last contribution describes the e–ph interaction term.

Lattice vibrations will produce a time modulation of the
bond’s length thereby changing the hopping matrix elem-
ents. Our starting point to account for these phenomena is
the Su–Schrieffer–Heeger Hamiltonian, where the contribu-
tion arising from the phonons is found by assuming a phonon
modulation of the electronic coupling terms [34–36], keeping
only the linear corrections to the atomic displacements from
equilibrium. This reads

γi, j = γ0 + α̂δi, j · δQi, j , (4)

where δ̂i, j is a unit vector in the bond direction, whereas
δQi, j sets the relative displacement of the neighboring car-
bon atoms, and α is the e–ph coupling strength defined as the
derivative of γ0 with respect to the bond length displacement.
At this point several descriptions are available. One possibil-
ity is to proceed by performing a further quantization of the
atomic displacements. This gives the many-body e–ph inter-
action term

He−ph =
∑

〈i, j〉vib

[
γ

e−ph
i, j c+

i cj(b
+ +b)+h.c.

]
, (5)

where the e–ph interaction is allowed only in a finite section
of length L of the CNT, b and b+ are the phonon operators and
the e–ph matrix elements γ

e−ph
i, j are generally given by

γ
e−ph
i, j = α

√
h/ (2mω0)̂δi, j · (̂ei − êj) , (6)

where êi is the phonon mode eigenvector which gives the
atomic displacements from the equilibrium positions.

Note that in contrast to the Holstein model where the e–ph
interaction is local, coupling to a non-local vibrational eigen-
mode is here described via a Su–Schreiffer–Heeger (SSH)
Hamiltonian [34, 35]. This is crucial to obtain a realistic de-
scription of the e–ph interaction.

In general, it is not easy to solve the interacting e–ph prob-
lem quantum mechanically. An alternative is to encode the
effect of e–ph interaction through a time-dependent modula-
tion of the hopping matrix elements, i.e.

γi, j = γ0 +γ1 cos(ω0t +ϕi, j) . (7)

This leads to a one-body time-dependent Hamiltonian [27, 37]

H(t) =
∑

i

Eic
+
i ci −

∑

〈i, j〉
γi, j(t)

[
c+

i cj +h.c.
]

.

Note that, in this case, ω0 acquires the meaning of a frequency
whereas in (5) hω0 is relevant as a true energy. This approx-
imation can be seen as a replacement of the phonon field
operators in (5) by a time-dependent function of time with
well-defined amplitude and phase.

From this time-dependent picture we can see that in the
ω0 → 0 limit the atomic positions are frozen. This allows
the use of a mean-field description where the configuration
coordinates are constrained to those that minimize the total
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energy of the system (electronic plus elastic). Note that the
new equilibrium positions can differ from the ones in the ab-
sence of the electron–phonon interaction, leading to a static
distortion of the lattice. This Born–Oppenheimer approxima-
tion allows for example the description of the dimerization in
polyacetylene [34, 35].

For finite hω0, however, the Born–Oppenheimer or adia-
batic approximation is not justified (the nuclei cannot be re-
garded as ‘clamped’). Thus, it is necessary to go beyond this
mean-field description either via the previously mentioned
time-dependent (or semiclassical) Hamiltonian or by using
a full quantum description as in (5). At this point the reader
may wonder about the differences between these two alterna-
tive descriptions, semiclassical and quantum. We defer a hint
on this question to Sect. 3.

3 Outline of the theoretical description

In order to investigate inelastic quantum trans-
port for the e–ph Hamiltonian (5), the framework introduced
in [38, 39] is followed. This scheme starts with rewriting the
Hamiltonian in an appropriate basis for the e–ph Fock space
(a single electron plus phonons), to construct an equivalent
multichannel one-body problem. As a matter of illustration,
let us consider an electron that tunnels from a left electrode (L)
to a right electrode (R), while it interacts with a single phonon
mode. Then, the asymptotic states in the non-interacting elec-
trodes can be labeled by means of two indices: (X, n), where
X = L, R is the index corresponding to the electrode and n
the number of phonon excitations in the system. This picture
is equivalent to a multichannel one-body problem where the
asymptotic states in the e–ph Fock space include both the elec-
tronic and new vibronic degrees of freedom. Each phonon
mode adds a dimension to the problem.

Using this picture, the transmission T(X,n)→(Y,m) and re-
flection R(X,n)→(Y,m) probabilities between the different chan-
nels are computed by using standard Green’s function tech-
niques [40]. Once these probabilities are calculated, they are
used as inputs to compute the non-equilibrium electron dis-
tributions in the leads (at finite temperature and bias voltage).
This is done by using the self-consistent procedure developed
in [43]. The electronic current can be obtained from these
self-consistent distributions, which take into account the Pauli
exclusion principle for the different competing elastic and in-
elastic processes.

It must be emphasized that in this approach the e–ph inter-
action is not assumed to produce phase randomization since
the quantum phases are fully conserved in this coherent de-
scription. Instead of calculating transition rates, the complex
quantum amplitude for each state in the Fock space is ob-
tained. Another interesting point to notice is that the solution
of the interacting Hamiltonian is obtained by truncating the
Fock space including only the states within some range of n.
This range can be enlarged until the solution converges, allow-
ing for a variational, non-perturbative, calculation. For the in-
terested reader, this approach has been applied to a variety of
problems including vibration-assisted tunneling in Scanning
Tunneling Microscopy experiments [41], transport through
molecules [42, 43] and resonant tunneling in double-barrier
heterostructures [40].

3.1 Connection with the time-dependent picture

As noted in [44], the connection between this
scheme and the semiclassical description mentioned in Sect.
2 can be established by using Floquet theory [45–47] to
solve the time-dependent problem associated with the model
given by (7). By rewriting the time-dependent problem in
Floquet space, it can be reduced to a higher-dimensional time-
independent problem. Floquet or Sambe space is just the
composed Hilbert space R ⊗ T , where R is the space of func-
tions in real space and T is the space of periodic functions with
period τ = 2π/ω0. The space T is spanned by the set of or-
thonormal Fourier vectors 〈t|m〉 ≡ exp(imω0t), where m is an
integer. Then, given a basis of Hilbert space {|ϕi〉}, a suitable
basis in Floquet space is given by {|ϕi, m〉 = |ϕi〉⊗ |m〉}. The
resemblance with the mapping technique for the quantum e–
ph problem described before is clear. In formal terms it can be
expressed as an isomorphism between the states in Fock space
and those in Floquet space [45]. Some key differences [44, 48]
are: (a) that for the case of phonons the temperature enters
naturally in the population of the different channels. This is
not the case for a time-dependent potential. (b) In contrast to
the situation for the time-dependent potential, where the in-
dex m plays the role of the number of phonons in the system,
the number of phonons in the system is bounded from below,
n ≥ 0. (c) Another important difference is that the presence of
the matrix elements for phonon emission and absorption de-
pends on the number n of phonons present in the system. In
contrast, the matrix elements in Floquet space between states
of different m are independent of it.

3.2 Determination of the e–ph Hamiltonian matrix
elements

In Sect. 4, the focus is made on transport through
zigzag and armchair CNTs in the presence of e–ph inter-
action with an A1(L) phonon mode (at the Γ point of the
Brillouin zone). One first describes explicitly the matrix elem-
ents of the e–ph Hamiltonian (5). These terms are essentially
provided by the projection of the bond direction on the rela-
tive displacement of the atoms from their equilibrium pos-
itions, δ̂i, j · (̂di − d̂j). The atomic displacements for the case
corresponding to the A1(L) mode in zigzag and armchair
CNTs are represented in Fig. 1. For zigzag tubes, it can be
shown that γ

e−ph
i, j = γ0 = 2α

√
h/(2mω0), with (i, j) corres-

ponding to a bond that is parallel to the axis direction, whereas
γ

e−ph
i, j = −γ0 cos(π/3) describes the coupling for bonds that

are tilted with respect to the CNT axis. The e–ph matrix elem-
ents for the case of armchair CNTs can be obtained in a similar
way.

4 Results and discussion: phonon-induced energy
gaps, manifestations in quantum transport

In this section, numerical results for transport
through zigzag and armchair CNTs in the presence of e–ph
interaction with an A1(L) phonon mode are shown and dis-
cussed. All the energies are expressed in units of the C–C
hopping matrix element γ0 (∼ 2.77 eV). The phonon en-
ergy is taken as hω0 	 0.07γ0 [32], while the parameter
α 	 α0 = 7 eV/Å is estimated from [51, 52].
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FIGURE 1 Total transmission probability as a function of the energy of the
incident electrons for n0 = 0. The top figure corresponds to zigzag (24, 0)
CNTs while the bottom figure corresponds to armchair (10, 10) CNTs. In
the insets we show the same information for n0 = 1. The results correspond
to CNTs in the presence of e–ph interaction with an A1(L) mode inducing
displacements along the axis direction as schematically represented in each
figure

In Fig. 1 (top panel), the total transmission probability
T(E) = ∑

n T(L,n0)→(R,n)(E) is shown as a function of the inci-
dent electron kinetic energy E for a zigzag tube if no phonons
are present in the system before the occurrence of the scatter-
ing process (n0 = 0). The main feature is the onset of a dip
centered at hω0/2 above the CNP which progressively deep-
ens as the tube length increases, until a full gap opens for
L 	 100 nm. The inelastic component of the total transmis-
sion shown in the plot is orders of magnitude smaller than
the elastic contribution in all the shown energy range. How-
ever, one observes that the reduction of the transmission in the
dip region is due to a complementary increase in the inelastic
reflection by phonon emission. Similar results are found for
armchair CNTs; see Fig. 1 (bottom panel).

The total transmission probability when one phonon is
already available for scattering (n0 = 1) is shown in Fig. 1
for zigzag tubes (top panel, inset) and armchair tubes (bot-
tom panel, inset). There are two main differences with the
case n0 = 0: the width of the gap at E ∼ hω0/2 is approxi-
mately

√
2 larger than in the prior case owing to stimulated

phonon emission. The second important difference is the ap-

pearance of a second gap at E ∼ −hω0/2. The analysis of the
different elastic and inelastic components of the transmission
and reflection probabilities reveals that this decrease in the
transmission is complemented by an increase in the inelastic
backscattering by phonon absorption.

To explain these results, let us consider an infinite tube
in the presence of e–ph interaction. For simplicity we will
consider the case of zigzag (N, 0) tubes, where the use of
a mode space approach [49, 50] simplifies the analysis. The
idea is to rewrite the problem in the basis that diagonal-
izes He for each layer of carbon atoms perpendicular to the
tube axis. Thus, the Hilbert space can be expanded in terms
of the states

∣∣lq
〉

corresponding to the different circumferen-
tial modes q (q = 0, 1, . . . , N −1) localized at the lth layer
of the tube. In the absence of static disorder, the electronic
Hamiltonian He does not couple the different modes, and the
different subbands correspond to linear chains with alternat-
ing hoppings γ0 and γq = 2γ0 cos(qπ/N) with dispersion re-

lations ε(0)(k) = ±
√

γ 2
0 +γ 2

q +2γ0γq cos(3kacc/2). Further-
more, since the symmetry of the considered phonon mode pre-
vents the coupling between different circumferential modes,
one obtains N independent problems for each value of q.
When N is an integer multiple of three, the tube is metallic and
the subbands contributing to the density of states close to the
CNP correspond to q = N/3, 2N/3.

The Fock space for the coupled e–ph system can be ex-
panded either in terms of the basis states

{∣∣lq, n
〉 = ∣∣lq

〉⊗|n〉},
where |n〉 corresponds to the state with n phonons in the sys-
tem, or, alternatively, {|k, n〉 = |k〉⊗ |n〉}, where |k〉 is a plane
wave in mode space with wave vector k along the axis direc-
tion. The interacting Hamiltonian in the Fock space for a given
q is represented in Fig. 2 (top panel). In the following, we con-
sider the mode with q = N/3, although a similar argument
holds for q = 2N/3. The electronic part of the Hamiltonian
for q = N/3 is an ordered chain with nearest-neighbor ma-
trix elements γ0 (γq = γ0 for q = 2N/3). In contrast, the e–ph

hopping matrix elements
(
γ

e−ph
i, j

)

q=N/3
are not homogeneous

from one layer to the next but have alternating values γ
e−ph
0

and −γ
e−ph
0 cos(π/3), thereby doubling the layer periodicity

of the many-body Hamiltonian.
In the absence of e–ph coupling, one obtains disconnected

chains associated with the different values of n, each with
unperturbed dispersion relation ε(0)

n = ε(0)
n (k) (see Fig. 2). Of

particular interest are the states |k+ = π/2a +|δk| , 0〉 and
|k+ − K, 1〉 (black circles), where a = 3acc/4 and K =2π/(2a)

is the wave vector associated with the lattice period by of
the overall Hamiltonian H . For vanishing e–ph coupling,
these states have the same total energy ε

(0)
0 (k+) = ε

(0)
1 (k+ −

K) = hω0/2. When the e–ph interaction is switched on, these
Fock states are mixed owing to the spatial periodicity intro-
duced by He−ph, i.e. 〈k+ − K, 1| He−ph |k+, 0〉 = ∆γ e−ph ≡
(3/2) γ

e−ph
0 
= 0 [53]. The degeneracy is thus lifted, giving rise

to the opening of an energy gap in ε0(k) and ε1(k) of width
2

∣∣∆γ e−ph
∣∣ around ε = hω0/2 (inset in Fig. 2).

Therefore, an incoming electron with a wave vector k
in the Fock state |k, n〉 will contain, as k approaches k+
(or −k+ + K ), an increasing admixture of |k − K, n +1〉 (or
|k + K, n −1〉) leading to a Bragg type of inelastic scattering.
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FIGURE 2 Top: representation of the many-body Hamiltonian in Fock
space for a circumferential mode q (note the two-layer periodicity) in zigzag
CNTs. Solid circles represent states in Fock space while the lines are off-
diagonal couplings. Bottom: scheme for the unperturbed (He−ph = 0) disper-
sion relations corresponding to n = 0, 1, 2 for the mode q = N/3. The states
marked with identical symbols correspond to degenerate states of the coupled
e–ph system. These degeneracies are lifted by the e–ph interaction leading
to the opening of energy gaps at hω0/2 above (below) the band center as
represented in the inset

The origin of this mechanism is the modification of the trans-
lational symmetry of the system driven by the e–ph interaction
which involves no static distortion of the lattice. Since the total
energy ε also contains the vibronic energy, we note that in the
previous argument the gap in ε0(k) manifests as a transmission
gap for kinetic electronic energies E ∼ hω0/2 while the gap
in ε1(k) leads to a transmission gap at E ∼ −hω0/2. A simi-
lar effect holds for the other states marked as symbols of the
same kind in Fig. 2. For the subband with q = 2N/3 the only
difference is a sign in γq = −γ0, which can be absorbed in
the wavefunction by changing only the character of the low-
energy states from bonding to anti-bonding. This results in the
transmission gaps shown in Fig. 1, which are in quantitative
agreement with the prior analysis.

Another interesting point to investigate is the scaling of
the transmission minimum at the gap center, T(E = hω0/2),
as a function of the CNT length L (the length of the interact-
ing region). This is shown in Fig. 3 for different values of α,
the e–ph coupling strength. Solid lines correspond to zigzag
tubes and dotted lines correspond to armchair tubes. Tunnel-
ing through the gap leads to a range of lengths where the trans-
mission decays exponentially with L, i.e. T ∝ exp(−L/ξ).

FIGURE 3 Total transmission probability at E = hω0/2 as a function of the
tube length for n = 0; the other parameters are the same as in Fig. 1. Solid
lines correspond to zigzag CNTs and dotted lines to armchair CNTs. The sat-
uration value of the total transmission as a function of α2 is shown in the
upper inset. The lower inset shows the fitted inverse decay rates (1/ξ) as
a function of α/α0

The decay length ξ is inversely proportional to the energy
gap ∆γ e−ph. The different geometries of zigzag and armchair
tubes lead to different values of γ

e−ph
i, j , which cause different

slopes of the exponential decay (see lower inset). Another in-
teresting feature is the observed saturation for longer tubes.
The saturation value Tsat as a function of α2 (upper inset of
Fig. 3) is associated with the small inelastic component of the
transmission (phonon-assisted tunneling through the gap).

In the following the consequences of the prior study on the
current–voltage characteristics of CNTs are explored. A first
important observation is that due to the finite energy of the
phonons, Pauli blocking will prevent the opening of the trans-
mission gap at low bias voltage. In order to activate this mech-
anism, the system has to be driven out of equilibrium by ap-
plying a sufficiently high bias in between the voltage probes.
To unveil the possible signatures of the proposed mechanism
in the current–voltage characteristics, the effect of the bias

FIGURE 4 Current versus bias voltage for a 150-nm-long zigzag (24, 0)

tube. Different curves correspond to different values of α. Solid lines corres-
pond to a fixed phonon population n0 = 0
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voltage is introduced into He by modifying the on-site ener-
gies of the π-orbitals, while the potential drop is assumed to
be equally distributed at the two contacts. The current–voltage
curves calculated from this model for different values of α and
zero temperature are shown in Fig. 4. The main feature re-
sulting from the gap opening is the onset of a current plateau
observed at V ∼ hω0 whose width scales linearly with α. Re-
markably, one notes that the obtained saturation plateau, of
approximately 30 µA, is in good agreement with experimen-
tal data [20]. This value exactly corresponds to (4e/h)hω0,
while the linear slope at low bias is given by: I/V = 4e2/h. As
one continues to increase the bias voltage, the current starts to
increase linearly. This is due to the lack of other ingredients
in our model, such as electronic coupling with other phonon
modes (such as those producing interband backscattering) or
electrostatic effects.

5 Conclusions

In summary, we have studied inelastic quantum
transport through CNTs in the presence of e–ph interaction
with an A1(L) mode. By using a full quantum coherent ap-
proach, we showed that phonon emission (absorption) in-
duces the opening of transmission gaps at hω0/2 above (be-
low) the CNP. Due to the finite energy of the considered opti-
cal phonons, this effect is suppressed at low bias voltages and
is activated for voltages in the order of hω0, generating the on-
set of a current plateau at ∼ 30 µA for perfect contacts. For the
case of semiconducting CNTs (not shown in this paper) with
an intrinsic gap smaller than the phonon energy, we found that
the predicted phonon induced gap remains.

While we have studied only the case of zigzag and arm-
chair tubes, we expect similar effects for chiral tubes. Besides,
the study of other phonon modes and the possible application
to systems other than CNTs open new promising challenges.
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