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We analyze quantum charge pumping in an open ring with a dot embedded in one of its arms. We show that
cyclic driving of the dot levels by a single parameter leads to a pumped current when a static magnetic flux is
simultaneously applied to the ring. Based on the computation of the Floquet-Green’s functions, we show that
for low driving frequencies �0, the interplay between the spatial interference through the ring plus photon-
assisted tunneling gives an average direct current, which is proportional to �0

2. The direction of the pumped
current can be reversed by changing the applied magnetic field.
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I. INTRODUCTION

A direct current �dc� is usually associated to a dissipative
flow of the electrons in response to an applied bias voltage.
However, in systems of mesoscopic scale a dc current can be
generated even at zero bias. This captivating quantum coher-
ent effect is called quantum charge pumping1–3 and it is of
considerable interest both theoretically1–8 and
experimentally.9,10 A device capable of providing such effect
is called a quantum pump and typically involves the cyclic
change of two device-control parameters with a frequency
�0. The operational regime of the pump can be characterized
according to the relative magnitude between �0 and the in-
verse of the time taken for an electron to traverse the sample,
1 /�T. When �0�1/�T the pump is in the so-called adiabatic
regime, whereas the opposite case, �0�1/�T, the pump is in
the nonadiabatic regime.

For adiabatic pumping, Brouwer3 gave an appealing ap-
proach that is based on a scattering matrix formulation to
low-frequency ac transport due to Büttiker et al.11 In this
formulation, the pumped current, which flows in response to
a the cyclic variation of a set �Xj� of device-control param-
eters, is expressed in terms of the scattering matrix S��Xj�� of
the system. One of the outcomes of this parametric pumping
theory, which is valid in the low-frequency regime ��0

�1/�T� and up to first order in frequency, is that the charge
pumped during a cycle is proportional to the area enclosed
by the path in the scattering matrix parameter space. Thus, to
have a nonvanishing pumped charge, at least two time-
dependent parameters that oscillate with a frequency �0 and
with a nonvanishing phase difference � between them are
needed.

In this context, a natural question that arises is whether a
pumped current can be obtained using a single time-
dependent parameter. In most of the works considered up to
now, at least two parameters are used to obtain pumping. A
typical configuration that has been extensively studied theo-
retically and experimentally10 consists of a dot connected to
two leads with two out-of-phase time-dependent gate volt-
ages that produce cyclic changes in its shape �see Fig. 1�a��.
In contrast, pumps based on a single parameter variation
have attracted much less attention. This is partly due to the

fact that no pumping can be obtained from them in the low-
frequency regime up to first order in �0. Hence, obtaining a
nontrivial result requires going beyond the adiabatic limit
described by the standard parametric pumping theory3 as in
Refs. 5, 12, and 13. In spite of giving a current, which, at low
frequencies, is a priori weaker than the one obtained using a
two-parameter variation, they can give comparable pumped
currents at intermediate and high frequencies.14 Besides, the
understanding of such “mono-parametric pumps” constitutes
a necessary step in the comprehension of driven systems.

Previous theoretical studies in this direction include the
works by Kravtsov and Yudson16 and Aronov and
Kravtsov,17 where pumping in a ring �not connected to leads�
threaded by a time-dependent flux was studied. In Ref. 18,
Wang et al. considered the case in which the height of one of
the barriers of a double-barrier system connected to external
leads is modulated periodically. This modulation dynami-
cally breaks the inversion symmetry of the system producing
a pumped current. Other theoretical works aiming at the fre-

FIG. 1. �a� Schematic representation of a typical quantum pump
consisting in an open dot driven by two out-of-phase time-
dependent gate voltages. �b� Scheme of the system considered in
this work, a ring connected to two leads. The ring, which is
threaded by a magnetic flux, contains a dot embeded in one of its
arms. Charge pumping is obtained by driving the dot levels through
a time-periodic potential.
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quency dependence of the pumped current for situations be-
yond the adiabatic approximation were also reported in Refs.
12 and 13. On the other hand, experimental studies using a
single-parameter modulation have been reported
recently,19,20 showing predominant rectification effects15 at
low frequencies and quantum pumping in the high-frequency
regime.

In this work we focus in mono-parametric pumping in
systems connected to external leads. Specifically, we study a
quantum pump consisting of a ring with a dot that is sub-
jected to a single time-periodic gate voltage embedded in one
of its arms, as represented in Fig. 1�b�.21 The ring is threaded
by a static magnetic field, which produces the left-right sym-
metry breaking needed for pumping. The unique role of the
time-dependent parameter in this pump is to provide for
photon-assisted channels. We show that in the low-frequency
regime ��0�1/�T� as a result of the interplay between spa-
tial interference through the ring and photon-assisted pro-
cesses, this device produces a dc current that is proportional
to �0

2 and whose direction can be reversed by tuning the
applied magnetic field.

Our theoretical framework mostly follows Ref. 22 and is
based on the use of Floquet’s theory23,24 to write the average
current in terms of the Fourier components of the retarded
Green’s functions for the system. However, instead of solv-
ing an eigenvalue problem as in Refs. 22 and 25, we com-
pletely rely on the computation of the Floquet-Green’s func-
tions for the system. The resulting picture is that of an
equivalent time-independent problem in a higher dimen-
sional space �similar to the one previously obtained for
electron-phonon interactions26,27� and is specially suited for
discrete Hamiltonians offering, thus, a promising application
to molecular systems.28

This work is organized as follows. First, we briefly intro-
duce our theoretical tools and present the case of a driven
double barrier as an example to motivate the subsequent dis-
cussion of mono-parametric quantum pumping. Then we fo-
cus in our model system, discussing our analytical and nu-
merical results.

II. THEORY

In this section, we introduce the theoretical tools that will
be used to address our specific problem. In order to keep the
discussion general, we consider at this point a generic system
consisting of a sample region that is connected to two leads
�left and right�. The time-dependent Hamiltonian can be
written in the form

H = Hsample�t� + Hleads + Hcontacts,

where the terms correspond to the contributions from the
sample, the leads, and the sample-leads coupling, respec-
tively. Following Ref. 22, we focus on the regime of quan-
tum coherent transport, and electron-electron interactions are
not considered.

We consider a situation in which both leads are in thermal
equilibrium with a common chemical potential, i.e., fL���
= fR���� f��� for all energies. Then, the current averaged
over one period of the modulation is given by22,25

Ī =
e

h
�

n
	 d��TR←L

�n� ��� − TL←R
�n� ����f��� , �1�

where

TR←L
�n� ��� = 2�R�� + n	�0�
GRL

�n����
22�L��� �2�

are the transmission probabilities for an electron with energy
� from left to right involving the absorption �or emission� of
an energy n	�0 �and similarly for TL←R

�n� ����. Here G�n����
= �1/T��0

Tdte−in�0tG�t ,�� are the coefficients of the Fourier
decomposition of the retarded Green’s function GR�t ,��, and
�L�R���� are given by the imaginary part of the retarded self-
energy correction due to the corresponding lead, �L�R����
=−Im 
L�R����.

Equation �1� was derived in Ref. 22 by solving the
Heisenberg equations of motion for the creation and annihi-
lation operators and taking advantage of the time periodicity
of the Hamiltonian. The transmission probabilities T�←�

�n� ���
were expressed in terms of the Fourier components G��

�n����
of the retarded Green’s functions. This procedure is, for non-
interacting electrons, formally equivalent to the use of the
Keldysh formalism29,30 but in contrast to previous works
along that path, the time periodicity of the Hamiltonian is
exploited through the use of Floquet’s theory.31

In Ref. 22 the Fourier components G��
�n���� of the retarded

Green’s functions were written �after tracing over the degrees
of freedom in the leads� in terms of the solutions of Floquet’s
equation23,24 for the sample region. Although the Floquet’s
states and their corresponding quasienergies can be obtained
numerically, this can take a significant computational power
depending on the system size. Here, we use instead a differ-
ent strategy: the essential idea is to write Eq. �1� completely
in terms of the Floquet-Green’s functions.

To such end we note that the Fourier coefficients G�n����
can be written as �see Appendix�

G��
�n���� = G��,n�,��,0�

F ��� , �3�

where the Floquet-Green’s functions

G��,n�,��,0�
F � ��,n
��I − HF�−1
�,0 �4�

are defined in terms of the Floquet Hamiltonian

HF = H�t� − i	
�

�t
. �5�

Note that both HF and GF are defined in the composed
Hilbert space R � T, where R is the space of functions in real
space and T is the space of periodic functions with period
�=2 /�0. The space T is spanned by the set of orthonormal
Fourier vectors �t 
n�exp�in�0t�, where n is an integer. A
suitable basis for this so called Floquet or Sambe space,24

R � T, is thus given by �
i ,n�
i � 
n�, where 
i corre-
sponds to a state localized at site i.

Substituting Eq. �3� in Eqs. �2� and �1�, we write the av-
erage current completely in terms of the Floquet-Green’s
functions GF �see Appendix�. The key point here is that this
renders an equivalent time-independent problem in a higher-
dimensional space, R � T. Therefore, the full power of the
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recursive Green’s functions techniques32 can be used accord-
ingly.

To compute these functions we consider only the Floquet
states 
j ,n within some range for n, i.e., 
n
�Nmax. This
range can be successively expanded until the answer con-
verges, giving thus a variational �nonperturbative� method.
The resulting scheme is similar to the one introduced in Refs.
26 and 27 for the problem of phonon-assisted electron
transport.35 The main differences36 are that �i� for phonons
the temperature enters naturally in the population of the dif-
ferent channels, �ii� the phonon spectrum is bounded from
below, and �iii� the matrix element for phonon emission and
absorption depend on the number N of phonons present in
the system before the scattering process.

In order to fix ideas and motivate the subsequent discus-
sion, let us see how this picture works for the case of a
driven double barrier and then we turn to the study of our
model system.

A. Example: Driven double barrier

Let us consider a system as depicted in the top of Fig.
2�a�. A simple Hamiltonian for that situation is given by

Hsample = EL̃�t�cL
+cL + E0cd

+cd + ER̃�t�cR
+cR + VL,d�cL

+cd + H.c.�

+ VR,d�cR
+cd + H.c.� .

where c�
+ �c�� are the creation �destruction� operators at site

� and EL̃=EL+2VgL cos��0t+�L� and ER̃=ER
+2VgR cos��0t+�R� are the energies of the barrier sites,
which are modulated periodically. Only one energy state E0
inside the double barrier is considered. The leads are re-
garded as one-dimensional tight-binding chains, which are
coupled to the sites L and R in the sample as shown in Fig.
2�a�.

The Floquet Hamiltonian �see Eq. �5�� for this system in
the composed space R � T is represented in the bottom of
Fig. 2�a�. The horizontal dimension corresponds to states lo-
calized in different spatial positions 
i, whereas the vertical
one corresponds to different Fourier states 
n. Lines along
the horizontal direction correspond to hoppings between
states localized in different positions, whereas the vertical
ones are determined by the Fourier coefficients of the time-
dependent part of the Hamiltonian. Thus, we can clearly see
that the resulting picture is that of a higher-dimensional time-
independent system. The transport properties can be com-
puted directly from the Green’s functions in this space as
discussed before.

Using this scheme, we can now try to understand the main
difference between a one-parameter and a two-parameter
pump. Symmetry breaking is at the heart of quantum charge
pumping: to obtain a directed current at zero-bias potential,
the left-right symmetry �LRS� of the system must be broken.
This can be achieved by breaking either time-reversal sym-
metry �TRS� or inversion symmetry �IS�. However, breaking
of the LRS alone does not guarantee a nonvanishing pumped
current. In a two-terminal configuration, for example, even
when these symmetries are statically broken �i.e., through a
time-independent potential�, TRS under magnetic-field inver-
sion and unitarity of the scattering matrix assures that the
transmittance is insensitive to the direction of propagation,37

i.e., T→���=T←���, and hence there is no pumped current.
When a time-dependent potential is added, photon-assisted
processes come into play opening new paths for transport.
The resulting picture is that of a multichannel system, and
the reciprocity relation T→���=T←��� valid for the static
case is replaced by an integral relation, �0

�T→���d�
=�0

�T←���d�, thus allowing for a nonvanishing pumping cur-
rent. The crucial difference between the situation where only
one time-dependent parameter is present and the one with
two, is the possibility of making a closed loop in Floquet
space involving at least two vertical processes �or two
“paths” in Floquet space�. When the two-parameter variation
is out of phase �L−�R�0, there will be a nonvanishing ac-
cumulated phase through the loop in a way that is analogous
to a magnetic flux. For �L−�R�0 mod�� the accumulated
phase is different, depending on the direction of motion.
Note that this directional asymmetry of the electronic motion
�which is a consequence of a dynamical breaking of IS and
TRS� is maximum when �L−�R= /2 mod��. We will see
that for a system as shown in Fig. 1�b�, where only one
time-dependent gate voltage is present, the directional asym-
metry is provided by the static magnetic field and is mani-
fested as a pumped current only when photon-assisted pro-
cesses are allowed.

III. MODEL

In what follows we focus on a system as depicted in Fig.
1�b�, consisting of a quantum dot embedded in an arm of a

FIG. 2. �a� Top: Scheme of a double-barrier system driven by
time-dependent gate voltages applied to each of the barriers. Bot-
tom: Representation of the Floquet Hamiltonian corresponding to
the tight-binding model introduced in the text for the system shown
in the top. Circles correspond to different states 
i ,n in Floquet
space, and lines are off-diagonal matrix elements. States along a
vertical line correspond to the same spatial states with different
number n of photon quanta. Note that the phase of the vertical
matrix elements connecting different Floquet states generally de-
pends on the direction of the transition. For example, the matrix
element of the Floquet Hamiltonian connecting the 
L ,n state with

L ,n+1 is VgL exp�i�L�, whereas the matrix element for the reverse
process is VgL exp�−i�L�. �b� Representation of the model Hamil-
tonian used in the text for the situation in Fig. 1�b�.
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ring, which, in turn, is connected to two leads �the dot is
placed symmetrically between the leads�. The ring is
threaded by a magnetic flux �. We do not consider the
electron-electron interaction in the dot, which is a reasonable
approximation for strong dot-ring coupling �open dot�. We
demonstrate our results using a lattice Hamiltonian similar to
the one used in Ref. 33 and more recently in Ref. 34. Al-
though we use the simplest model with this geometry, i.e., a
four-sites ring, our results can be extended to more general
situations involving, for example, several sites in each arm of
the ring and arbitrary potential profile. Our Hamiltonian is
depicted in Fig. 2�b�.

The magnetic flux � is introduced as a phase factor in
VL,d=Vd,L

* = 
VL,d
exp�i2� /�0� �note that gauge invariance
allows one to place it on any bond of the ring�, b and d are
the labels used for the site in the reference arm of the ring
and the dot, respectively. The energy of the state in the dot
Edot, which is modulated periodically by a gate voltage, is
modeled through Edot=E0+2Vg cos��0t�. The leads are mod-
eled as one-dimensional tight-binding chains with zero site
energy and hopping matrix element V �Hleads

=��i,j with i,j�l,rV�ci
+cj +H.c.��.

IV. RESULTS AND DISCUSSION

Now we turn to the study of the pumping properties of
our system. First, we write the kernel in Eq. �1� as a sum of
contributions due to the different channels

�
n

�TR←L
�n� ��� − TL←R

�n� ���� � �
n

�T�n���� � �T��� , �6�

where

�T�n���� = TR←L
�n� ��� − TL←R

�n� ��� = 2��R,n����

�
G�R,n�←�L,0�
F ���
22��L,0���� − 2��L,n����

�
G�L,n�←�R,0�
F ���
22��R,0���� . �7�

To gain an understanding of the physical mechanisms that
give rise to pumping in our system, we compute the Floquet-
Green’s functions up to the first nonvanishing order in the
driving amplitude. Using Dyson’s equation for the Floquet-
Green’s functions, we obtain for the elastic component,

G�R,0�←�L,0�
F ��� � gR,L + gR,dVg�gd,d

�+� + gd,d
�−��Vggd,L, �8�

and similarly for G�L,0�←�R,0�
F ���. gi,j are the exact retarded

Green’s functions for the system in the absence of the time-
dependent potential. The superscripts are a short notation to
indicate that the corresponding Green’s functions are evalu-
ated at a displaced energy, gi,j

�±��gi,j��±	��; all the other
functions are evaluated at the energy �.

From Eq. �8�, we can appreciate that the elastic compo-
nent of the Floquet-Green’s function connecting the left and
right electrodes is the sum of two terms: one that corre-
sponds to direct transmission from left to right and other that
involves virtual photon emission and absorption in the dot.
Thus, the modulus squared of G��,0�;��,0�

F ��� contains three
terms: �a� 
g�,�
2, which is � independent and does not con-

tribute to the pumped current because it obeys the symmetry

g�,�
= 
g�,�
.37 �b� The next contribution is the modulus
squared of the second term in Eq. �8�, which is fourth order
in the driving amplitude and can be neglected in a first ap-
proximation. �c� The last contribution is an interference term
between the quantum mechanical amplitudes corresponding
to direct tunneling and tunneling plus virtual photon emis-
sion and absorption. This term, which critically depends on
the phase difference between the two terms in Eq. �8�, has a
directional asymmetry due to the presence of the magnetic
field, which gives rise to a nonvanishing contribution to the
pumped current.

This asymmetry is reflected in the fact that 
gL,d
� 
gd,L

for ��0 mod��. To understand this difference, it is useful
to note that gL,d �or gd,L� is proportional to the effective hop-

ping between the corresponding sites, namely, ṼL,d �or Ṽd,L,
being the proportionality constant, the same for both cases�.
This effective hopping can be written as a sum of two terms,
a direct one from site L to the dot and another that corre-

sponds to the alternative path through the ring: ṼL,d=VL,d

+VL,bg̃bVb,RḡRVR,d �a similar expression holds for Ṽd,L�,
where g̃b is the Green’s function of the isolated b site renor-
malized by the presence of the R site and the right lead, ḡR is
the Green’s function of the isolated right site renormalized
by the right lead. It is easy to see that the interference be-
tween these two spatial paths is directionally asymmetric for
��0 mod��, giving, therefore, 
gL,d
� 
gd,L
. Again, we
have a situation similar to the one in Eq. �8�, but this time the
interference takes place in real space.

A similar analysis can be performed based on the study of
the Floquet-Green’s functions involving a net photon absorp-
tion and emission

G�R,±1�←�L,0�
F ��� � gR,d

�±�Vggd,L. �9�

Again, the main observation is that the pumped current is
originated from spatial interference through the ring plus the
photon-assisted processes provided by the time-dependent
variation of the dot’s energy.

In order to obtain the frequency dependence of the
pumped current, we assume the validity of the broadband
approximation and expand the Green’s functions g��

�±�

=g����±	�0� for low frequencies. Using this expansion in
Eqs. �8� and �9�, it can be seen that the overall frequency-
independent contribution to �T is zero and results from a
cancellation between the elastic and the inelastic contribu-
tions. The contributions to �T�+� that are first order in 	�0
cancel with the corresponding ones in �T�−�. Inspection of
Eq. �8� shows that the linear term in �T�0� also vanishes as a
consequence of the symmetry between the sidebands of ab-
sorption and emission.38 Hence, we observe that the first

nonvanishing contribution to the average current Ī is propor-
tional to �Vg�0�2.

It must be noted that the predicted frequency dependence

of the pumped current Ī is in consistency with the general
results presented in Refs. 12 and 13 for different systems.
Here, we interpret our results within the framework intro-
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duced in Ref. 13: the charge pumped per cycle is determined
not by the contour in parameter space, as in Ref. 3 �which in
this case encloses a vanishing area�, but by the contour in
phase space13 �which contains, in addition to the pumping
parameters, their time-derivatives�. The contour in phase
space encompasses a nonvanishing area that is proportional
to �0, giving thus the predicted quadratic frequency depen-

dence for the pumped current Ī.
The results obtained up to now are very general in the

sense that they do not depend much on the specifics of the
model as long as the geometry is preserved. Let us contrast
these analytical results with the numerical results for arbi-
trary frequency and driving amplitude. The results shown in
Figs. 3 and 4 are computed using Eqs. �1�–�3� for zero tem-
perature. Satisfactory accuracy is obtained by considering
Floquet’s states with 
n
�4.

A contour plot for the absolute value of the average cur-
rent for small frequency and driving amplitudes is shown in
Fig. 3�a�; the horizontal axis corresponds to the position of
the Fermi energy in the leads and the vertical one corre-
sponds to the magnetic flux in units of the flux quantum. The

regions with larger Ī values correspond to darker areas. We

observe that the larger currents are located for energies close
to the energy of the dot’s level ��F�1� and small magnetic
flux ���0.1�0�. As the magnetic flux increases from zero to
half flux quantum, the position of these maxima move due to
interference inside the ring. At �=0.5�0, the TRS of the
system is restored and the pumped current vanishes.

In Fig. 3�b�, we show the average current as a function of
the Fermi energy for ���0.1�0�. We observe a resonant
behavior for Fermi energies close to the dot’s energy. This is
expected because photon-assisted processes are stronger
close the resonant condition. In the inset of Fig. 3�b�, we
show the flux dependence near the resonant point ��F

=1.15�. The pumped current is periodic in the applied mag-
netic flux with a period equal to the flux quantum and several
harmonics �up to the fifth� contribute importantly to this de-
pendence. Interestingly, we can see that the pumped current
can be reversed by tuning either the magnitude or the direc-
tion of the magnetic field.

Another interesting feature that we can appreciate in Fig.
3�a� is the appearance of very narrow maxima in the pumped
current for Fermi energies of the order of the driving fre-
quency �weak maxima close to the vertical �F=0 axis in Fig.
3�a��. This is because, for energies smaller than 	�0, the
processes involving of photon emission are energetically for-
bidden, thus, generating a strong asymmetry between emis-
sion and absorption, which leads to a pumped current that
decays in magnitude as the Fermi energy is increased. In this
highly nonadiabatic situation, the previous theoretical analy-
sis based on a low-frequency expansion of the Green’s func-
tions fails and the currents do not follow the predicted �0

2

dependence for 	�0��F �see dotted line in Fig. 4�.
The pumped current as a function of 	�0 is shown in Fig.

4. Different curves correspond to different values of the driv-

FIG. 3. �a� Contour plot of the the absolute value of the average

dc current Ī for the system shown in Fig. 2�b�. The horizontal scale
corresponds to the Fermi energy in the leads, whereas the vertical
axis is the flux through the ring. The values of the parameters in this
plot are: Vg=0.001, 	�=0.002, 
VL,d
= 
VR,d
=−0.5; all the other
hoppings are set equal to V=−1, which is taken as the unit of
energy. Note the strong maximum for Fermi energies close to the
dot’s energy and flux ��0.1�0. In �b� we show the dependence on
the Fermi energy for �=0.1�0 �the other parameters are the same as
in �a��. The inset in �b� shows the flux dependence close to the
resonant point ��F=1.15�. The plots in this lower panel correspond
to traces along the dotted lines in the contour plot.

FIG. 4. Absolute value of the average dc current Ī for the system
shown in Fig. 2�b� as a function of the driving frequency. The solid
and dashed lines correspond to Vg=0.01 and Vg=0.001, respec-
tively. The Fermi energy and the flux are chosen close to the reso-
nant point ��F=1.15 and �=0.1�0�. The values of the other param-
eters are as in the previous figure. The dotted line corresponds to a
small Fermi energy �F=0.01, �=0.4�0, and Vg=0.001. Note that
for this case �dotted line� the quadratic dependence with the driving
frequency holds up to 	�0��F.
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ing amplitude. A line corresponding to a quadratic behavior
is also shown for reference. These results clearly show the
predicted low-frequency dependence of the pumped current
Ī��0

2 up to frequencies of the order of the minimum between
the width of the resonant level in the dot ��dot�0.4� and the
Fermi energy. The dependence on the driving amplitude �not
shown in the figure� also verifies a quadratic dependence up
to moderate driving amplitudes �Vg�0.1V�.

V. CONCLUSIONS

In summary, we have studied quantum charge pumping in
a system with a single time-periodic parameter using a for-
malism based on the computation of the Floquet-Green’s
functions. The resulting picture is that of a time-independent
system in a higher-dimensional space where processes occur-
ring in real space and photon-assisted processes enter in the
same footing. This allows us to clarify the main differences
between a one-parameter and a two-parameter pump.

Our pump consists of a ring connected to two leads and
containing a “dot” embedded in one of its arms. The ring is
threaded by a magnetic flux while the dot levels are sub-
jected to a time-periodic gate voltage. We have shown that a
pumped current proportional to the square of the driving fre-
quency appears as a result of the combined effect of spatial
interference through the ring and photon-assisted tunneling.
The direction of the current can be changed by tuning either
the direction or the magnitude of the magnetic field. It must
be emphasized that the directional asymmetry needed to ob-
tain quantum pumping is provided through the static mag-
netic field, whereas the unique role of the time-dependent
parameter is to provide additional inelastic channels for
transport. In this sense, a pumped current can be obtained
using any other mechanism that provides such inelastic chan-
nels as long as the phase coherence of the composed system
�sample plus inelastic scatterer� is preserved.

Note added in proof. Recently, we became aware of two
related papers by L. Arrachea.39
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APPENDIX

In order to derive Eq. �3�, we write the retarded Green’s
function G�,��t ,�� in terms of the time-evolution operator of
the system U�,��t , t�� �defined by the relations 
��t�
=U�t , t0�
��t0�, U�t0 , t0��1�

G�,��t,�� = −
i

	
	

0

�

d� exp�i��/	�U�,��t,t − �� . �A1�

Then, using the well-known relation between the matrix el-
ements of the time-evolution operator and the Floquet
Hamiltonian23

��
U�t,t0�
� = �
n=−�

�

��,n
exp�− iHF�t,t0�/	�
�,0

� exp�in�t� �A2�

in Eq. �A1� and integrating over �, we obtain,

G�,��t,�� = �
n=−�

�

��,n
��1 − HF�−1
�,0exp�in�t� .

�A3�

The coefficients of the exponential can be identified as the
Fourier coefficients in the Fourier expansion of G�,��t ,��
=�nG�,�

�n� ���exp�in�t� from where Eq. �3� follows.
Substituting this relation into Eqs. �2� and �1� gives the

average current in terms of the Floquet-Green’s functions

Ī =
e

h
�

n
	 d��TR←L

�n� ��� − TL←R
�n� ����f��� , �A4�

where

TR←L
�n� ��� = 2��R,n����
G�R,n�←�L,0�

F ���
22��L,0���� .

The transmittance in the reverse sense follows from the last
equation by exchanging the L and R indexes.
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