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Coherent versus Sequential Electron Tunneling in Quantum Dots
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Manifestations of quantum coherence in the electronic conductance through nearly closed quantum
dots in the Coulomb-blockade regime are addressed. We show that quantum coherent tunneling
processes explain some puzzling statistical features of the conductance peak heights observed in
recent experiments at low temperatures. We employ the constant interaction model and the random
matrix theory to model the quantum dot electronic interactions and its single-particle statistical
fluctuations, taking full account of the finite decay width of the quantum dot levels.
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sidered physical processes, adding new parameters to the k;a2L;R
Recent experimental studies of electronic transport
through nearly isolated quantum dots [1,2] assess the
importance of quantum coherence and the nature of de-
phasing mechanisms in finite interacting electronic sys-
tems. Of particular interest is the Coulomb-blockade
regime, where the thermal energy kBT is much smaller
than the charging energy EC necessary to add an electron
to the quantum dot. In this regime the conductance de-
pends primarily on the quantum properties of the dot,
such as its resonance levels and the corresponding line-
widths due to the coupling between the dot and leads.
Electrons are allowed to tunnel through the quantum dot
whenever the charging energy is compensated by an
external potential and the dot energy levels are in reso-
nance with the chemical potential at the leads (small bias
limit). The tunneling condition can be attained, for in-
stance, by a tunable gate voltage Vg. In a typical experi-
ment Vg is varied to obtain the conductance spectrum, a
sequence of sharp (Coulomb-blockade) peaks.

Sequential tunneling is the key hypothesis for the
standard rate equations [3] used to explain the transmis-
sion spectrum of quantum dots in the Coulomb-blockade
regime [4,5]. This probabilistic picture neglects nonreso-
nant quantum virtual processes, under the assumption
that the resonant decay widths � are much smaller than
both kBT and the energy separation between the quantum
dot resonances �", namely, � � kBT and � � �", a
condition often met by experiments in nearly isolated
quantum dots.

The early experimental data taken from ballistic cha-
otic quantum dots were successfully confronted with the
sequential theory by using the random matrix theory
(RMT) to model the dot statistical single-particle proper-
ties [4,5]. More recently, the analysis of the measured
conductance peak heights in the Coulomb-blockade re-
gime [1,2] show significant deviations from this theory
[6–8], indicating that some physics is missing. The in-
clusion of inelastic scattering processes [9–12], spin-orbit
coupling [13], and exchange interaction [14,15] into the
sequential approach expand in interesting ways the con-
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description. Unfortunately, these studies achieved only a
limited success in reconciling theory with experiment.

In this Letter we show that quantum coherence, so far
overlooked, leads to important corrections to the se-
quential tunneling picture [16] and explains some of the
puzzles pointed out by the conductance experiments
[1,2]. The importance of coherent processes is justified
by noticing that while the sequential theory requires � �
kBT, �", the experiments satisfy those conditions only on
average, namely, h�i< � � h�"i and h�i & kBT. Since
both the decay width � and the resonance spacings �"
fluctuate, conductance peaks where � is larger than kBT
and comparable to �" are not exceptional. More impor-
tantly, the study of fully coherent transport, as opposed to
the sequential tunneling limit, provides a better frame-
work to understand the interplay between coherence and
interactions.

We describe a quantum dot coupled to external leads by
the Hamiltonian

ĤH � ĤHdot � ĤHleads � ĤHcoupling: (1)

We write the chaotic quantum dot Hamiltonian ĤHdot as

ĤH dot �
X
j

�Ej � e�Vg	d�j dj �
e2

2C
N̂N�N̂N � 1	; (2)

where d�j creates an electron in the jth eigenstate with
energy Ej of the closed dot, N̂N �

P
jd

�
j dj is the electron

number operator in the dot, �Vg is the electrostatic en-
ergy due to the external gate (as usual, Vg is the gate
voltage and � depends on the system specifics), and C is
the effective dot capacitance. Equation (2) is the constant
interaction model. In chaotic quantum dots ground state
energy fluctuations due to interaction effects are very
small in the large N limit [5]. We also do not account
for spin and exchange interactions, which were recently
addressed in the master equation framework by
Refs. [14,15]. The electrons in the leads are treated as
noninteracting, namely,

ĤH leads �
X

"k;ac
�
k;ack;a; (3)
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where c�k;a creates an electron at the state of wave vector
k � �2m�"k	

1=2= �h at channel ‘‘a’’ either in the left (L) or
in the right (R) lead. The dot-lead coupling term is

ĤH coupling �
X

k;a2L;R

X
j

�V�k;a	;jc�k;adj � H:c:	: (4)

The magnitude of the coupling matrix elements V�k;a	;j
determines through a Fermi golden rule [17] the electron
decay width � or the tunneling rate �= �h in the master
equation framework. For quantum dots in the Coulomb-
blockade regime h�i is much smaller than the dot mean
level spacing �.

The conductance through the quantum dot is expressed
in terms of the interacting system retarded Green’s func-
tion, GRi;j�t	 � ��i= �h	��t	hfdi�t	; d�j �0	gi. The evaluation
of hGRi;j�t	i follows the treatment presented by Baltin and
collaborators [18] and generalizes their result to cases
where the condition � � �" is not met.

The retarded Green’s function is written as a sum over
terms containing a different (and fixed) number of elec-
trons in the dot

hGRi;j�t	i � �
i
�h
��t	

X1
N�0

PNhfdi�t	; d�j �0	giN; (5)

where PN is the thermal probability to find N electrons in
the dot. This probability considers the full set of occupa-
tion numbers fn‘g of the ĤHdot eigenstates. Equation (5) can
be formally solved by the method of the equation of
motion. In practice, the equations do not close unless we
assume that the number of electrons in the dot does not
fluctuate, which means that we replace N̂N by its expecta-
tion value N [19]. This simplification is entirely justified
in the cases of interest, where e2=C� max ��; kBT	.

The matrix representation of the retarded Green’s func-
tion is then cast as

hGR�"	i �
X1
N�0

PNf�"I �H
�N	
dot ��R�"	��1�I � nN	

� �"I �H�N�1	
dot � �R�"	��1nNg: (6)

where the quantum dot matrix elements are

�H�N	
dot �i;j � �Ej � e�Vg �UN	�i;j; (7)

and U is the quantum dot charging energy, namely, U �
e2=C. In Eq. (6) we define �nN�i;j � hniiN�i;j as the di-
agonal matrix whose entries are the canonical occupation
numbers of the (closed) dot eigenstates. The retarded self-
energy matrix elements, due to the coupling to the leads,
become

��R�"	�i;j �
X

k;a2L;R

Vi;�k;a	V�k;a	;j

"� i0� � "k;a
: (8)

The coupling matrix elements V�k;a	;j vary in the energy
scale of "k and hence are practically constant in energy
windows comprising several single-particle states. We
116801-2
neglect such variations to write

�R�"	 � �
i
2
��L � �R	; (9)

where
P
kVi;�k;a	V�k;a	;j=�"� i0� � "k;a	 � �i��a�i;j=2.

The energy dependence due to the principal value integral
is negligible in the Coulomb-blockade regime.

The linear-response conductance is [17]

G �
e2

h
g with g �

Z
d"

�
�
@f#
@"

�
TR;L�"	; (10)

where f# is the Fermi distribution function in the leads
with chemical potential #. TR;L is the system transmit-
tance that can be computed from the retarded Green’s
function

TR;L�"	 �

�������
X
i;j

V�k;L	;i�G
R�i;jVj;�k;R	

�������
2
: (11)

Equivalently, the above expression can also be casted in
the well-known form TR;L � tr��RG

R�LG
A	 [17].

To this point our approach is quite general. Now, we
replace GR by its thermal average hGRi. Albeit restrictive
[20], this is a very reasonable approximation for
Coulomb-blockade peaks in quantum dots at low tem-
peratures. Our approach is reduced to the sequential tun-
neling one [3] in the limit of � � min �kBT; �"	. The
main improvement is that we naturally account for quan-
tum virtual tunneling processes. Those are significant
whenever kBT becomes comparable with �, a condition
often met by experiments. Furthermore, both the single-
particle level spacings �" and the decay widths � fluc-
tuate. Even if in average � � h�i, situations where �" is
comparable to � are not infrequent. In these cases quan-
tum corrections are important. When the condition
�=�"� 1 is always satisfied and not only in average,
corrections to the conductance become indeed negligible.
This was the limit analyzed in Ref. [18] for the phase
lapse problem. Note also the contrast with the case of
elastic cotunneling at the conductance valleys. There, the
contribution of the off-resonant levels is of order �=U,
whereas here their contribution is of order �=�".

We switch now to the statistical study of the dimen-
sionless conductance peak heights gmax. This analysis
allows for a comparison between the results of our ap-
proach, experiments, and the sequential tunneling theory.
The statistical ansatz is to assume that the underlying
electronic dynamics in the quantum dot is very complex,
and hence the fluctuation properties of its single-particle
eigenenergies and eigenfunctions coincide with those of
an ensemble of random matrices [4,5]. Accordingly, the
single-particle levels display universal fluctuations and
their spacings �" follow the Wigner-Dyson distribution.
Likewise, the decay widths � are Porter-Thomas distrib-
uted. The physical inputs of the statistical theory are only
the mean level spacing � and the average decay width h�i.
We consider the dot both in the absence of a magnetic
field (orthogonal ensemble, % � 1) and in the presence of
116801-2
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a magnetic field that breaks the time-reversal symmetry
(unitary ensemble,% � 2). The later is the relevant one to
be compared with the available experimental data.

The numerical implementation is straightforward but
costly since Eq. (6) requires matrix inversions for each
realization. The canonical thermal quantities PN and
hniiN are computed using the quadrature formula ex-
plained in Ref. [21], which was already used for quantum
dots [7,8]. For kBT & � good accuracy requires taking
into account at least 30 levels around the resonant one. We
use typically 105 realizations for the ensemble averaging.
The charging energy U is taken to be 50� (the results are
quite insensitive to U, provided U� �).

The data of Ref. [1] show that at very low temperatures,
kBT � �, the conductance peak height distribution does
not follow the standard random matrix theory [6]. By
accounting for quantum coherent tunneling we obtain a
very nice agreement with the experimental distributions.
This is illustrated in Fig. 1 for B � 0 (% � 2). In the inset
we present our results for the distribution of gmax for B �
0 (% � 1). In Fig. 1 the dimensionless conductance peak
heights gmax are scaled to the unit mean. We show the
peak heights distribution for kBT � 0:1�, h�i � 0:1�
(solid line), and h�i � 0:2� (dashed line). The histogram
corresponds to the experimental result of Ref. [1] avail-
able only for B � 0 (% � 2). Different dots have different
h�i=�, a ratio that can be determined from the experi-
mental gmax. h�i=�� 0:1 is representative of the ana-
lyzed experiments. We find that as the ratio h�i=� is
increased, the probability to obtain small conductances
is suppressed in comparison with the standard sequential
theory (dotted line). This can be understood as follows: If
a given resonance has small tunneling rates, the contri-
butions due to virtual processes through its neighbors will
reduce the chance to obtain a very small peak. Thus, we
expect P�gmax � 0	 � 0.
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FIG. 1. Peak height probability distribution P�gmax	 for
kBT � 0:1� and B � 0 (% � 2). The same for B � 0 (% � 1)
in the inset. Our theory for h�i=� � 0:1 (solid line) and 0.2
(dashed line) is compared with the standard sequential tunnel-
ing result (dotted line), and the experimental distribution
(histogram) [1].
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In the early experiment by Chang et al. [22] special
care was taken to discard from the statistical sample
conductance peak heights that did not fulfill � � kBT.
Hence, corrections due to the finite ratio �=� are practi-
cally negligible. This might explain why a good agree-
ment with the standard sequential theory was found there
[22]. Note also that as kBT becomes comparable with h�i
the assessment of the quantum dot temperature through
the widths of the Coulomb-blockade peaks becomes un-
reliable, due to the non-negligible �.

The experimental results of Ref. [1] show another
striking and unexplained discrepancy with respect to
the standard rate equations. This is best quantified by
the ratio between the standard deviation �gmax and the
mean conductance peak heights hgmaxi, namely,

&g �
�gmax

hgmaxi
�

���������������������������������������
h�gmax	2i � hgmaxi2

p
hgmaxi

: (12)

In the experiments �gmax is significantly smaller than
predicted by the rate equations plus RMT. Recent works
[9,11,12] discuss whether such deviations can be attrib-
uted to inelastic processes [23]. Our approach explains the
experimental findings in the low temperature regime
kBT=� � 1, where inelastic processes are hard to justify.
In Fig. 2 we show &g for B � 0 (% � 2) as a function of
the thermal energy for different values of h�i=�. The
inset shows &g for the case when B � 0 (% � 1). The
standard sequential theory results [7] are illustrated by
the dotted lines.

At low temperatures and as h�i=� is increased, our &g
is significantly reduced with respect to the standard
sequential theory prediction. For higher temperatures,
kBT * 0:5�, we obtain larger &g than the measured
ones. Furthermore, as the temperature increases, our &g
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FIG. 2. Normalized peak heights distribution width &g for
B � 0 (the B � 0 case is shown in the inset) as a function of
kBT=�, for h�i=� � 0:05; 0:1; 0:2 (dash-dotted, solid, and
dashed lines, respectively). Symbols correspond to the experi-
mental results of Ref. [1] for different dots and the dotted lines
to the standard sequential theory.
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approaches the standard theory result. Similar behavior
was also recently found by including the exchange term
in ĤHdot [14,15]. However, at high temperatures we expect
a reduction of the peak heights fluctuations due to in-
elasticity and decoherence.

The suppression of the weak localization peak was
recently used to determine the dephasing time '( in
open quantum dots [24,25]. This inspired Folk et al. to
experimentally investigate the change in the conductance
peak height upon breaking the time-reversal symmetry
of the quantum dots by applying a magnetic field B,
namely,

) �
hgmaxiB�0 � hgmaxiB�0

hgmaxiB�0
: (13)

At zero temperature the sequential tunneling theory gives
a constant ) � 1=4. Inclusion of temperature corrections
and spectral fluctuations gives small changes, essentially
keeping ) ’ 1=4 [11,12]. In Fig. 3 we show ) as a func-
tion of temperature for different values of h�i=�. Our
simulations show that ) is larger than 1=4 at low tem-
peratures and decreases with increasing kBT. This behav-
ior suggests that a finite ratio h�i=� enhances more
effectively the conductance in the unitary case than in
the orthogonal case. Since ) is very sensitive to the ratio
h�i=�, particular care must be exercised when comparing
data corresponding to different quantum dots. As in the
analysis of &g our results suggest that an additional
physical process is needed to explain the experimental
data for kBT * �.

In summary, we have investigated the effect of
quantum coherent processes on the statistics of the con-
ductance peak heights. We found that at very low tem-
peratures this leads to significant corrections to the
distribution of conductance peak heights obtained using
the standard sequential theory. The relevant parameter for
116801-4
these corrections is h�i=kBT. Our study also indicates that
estimates of the inelastic scattering rates and the strength
of the effective exchange interaction in quantum dots
using the peak height distributions need to account for
coherent tunneling in order to be quantitative.
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